

Product Specification

SPECIFICATION FOR APPROVAL

() Preliminary Specification
(•) Final Specification

Title		27" UHD TFT LC	CD .
BUYER		SUPPLIER	LG Display Co., Ltd.
MODEL		*MODEL	LM270QQ2

^{*}When you obtain standard approval,

please use the above model name without suffix

APPROVED BY	SIGNATURE DATE
Please return 1 copy for your	confirmation with
your signature and co	omments.

SIGNATURE DATE

LG Display Co., Ltd

Ver. 1.3 Feb., 14, 2020 1 / 35

Product Specification

Contents

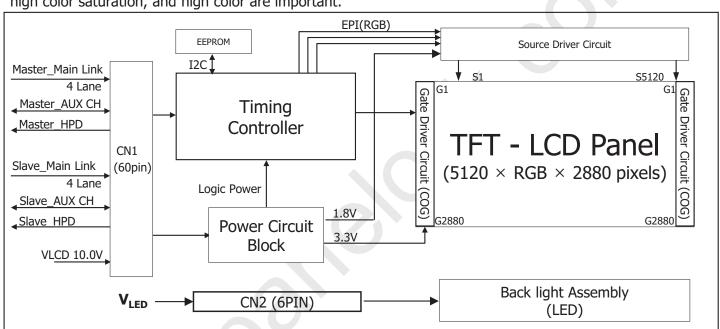
No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	9
3-3	LVDS CHARACTERISTICS	12
3-4	SIGNAL TIMING SPECIFICATIONS	17
3-5	SIGNAL TIMING WAVEFORMS	18
3-6	COLOR INPUT DATA REFERENCE	19
3-7	POWER SEQUENCE & DIP CONDITION FOR LCD MODULE	20
4	OPTICAL SPECIFICATIONS	22
5	MECHANICAL CHARACTERISTICS	28
6	RELIABLITY	31
7	INTERNATIONAL STANDARDS	32
7-1	SAFETY	32
7-2	ENVIRONMENT	32
8	PACKING	33
8-1	DESIGNATION OF LOT MARK	33
8-2	PACKING FORM	33
9	PRECAUTIONS	34

Ver. 1.3 Feb., 14, 2020 2 / 35

Product Specification

RECORD OF REVISIONS

1.0		Page	Before		After				Application Date		
	Aug., 10, 2017	-	Final Sp	ecificatio	ns						
1.1	Nov., 03, 2017	22	Symbol	Min	Values Typ	9	Symbol	Mir	n	Values Typ	
	, , , , ,		CR	840	1200		CR	770)	1100	
1.2	Jul., 18,2018	20	Delete T2	2/T7 Spec.							
			Timing Required By	Limits Units	Notes	Timin	Required By	Limits Min Max	Units	Notes	•
			T ₁ Source	0.5 10 ms 10 200 ms	-	T ₁	Source	0.5 10	ms	-	
			T2 Sink T3 Sink	10 200 ms 15 200 ms	-	T ₃	Sink Source	15 200	ms ms	- 6	
			T ₄ Source	ms	6	T ₅	Source		ms	6	Jul., 18, 2018
			T ₅ Source	ms	6	T ₆	Source	- 100	ms	-	' ' ' '
			T ₆ Source	- 100 ms 0 50 ms	-	T ₈	Source	200 -	ms		
			T ₇ Sink T ₈ Source	0 50 ms 200 - ms	-	T ₉	Source	200 -	ms	7	
			ı 	200 - ms	7			>			
1.3	Feb.,14,2020	17	Add adap	tive sync.	Hz						Feb.,14,2020
							***************************************	***************************************			



Product Specification

1. General Description

LM270QQ2 is a Color Active Matrix Liquid Crystal Display with a Light Emitting Diode (LED) backlight system without LED driver. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 27 inch diagonally measured active display area with UHD resolution (5120 horizontal by 2880 vertical pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 1.07Billion colors with A-FRC (Advanced Frame Rate Control). It has been designed to apply eDP(HBR2, 5.4Gbps) interface.

It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

General Features

[FIG.1] Block diagram

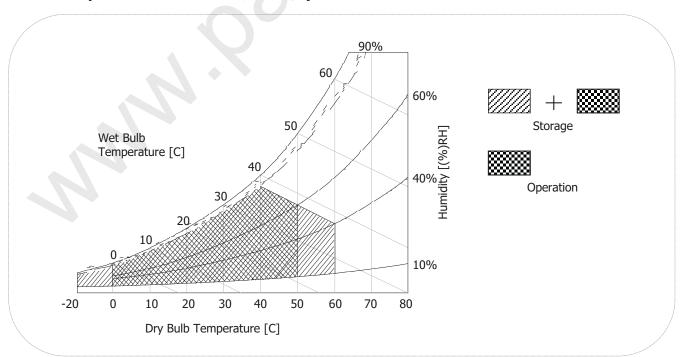
<u>ecirciai i catares</u>	
Active Screen Size	27 inches (682.901mm) diagonal
Outline Dimension	620.6 x 361.1 x 13.3 mm (Typ.)
Pixel Pitch	0.03895 mm x 0.11685 mm
Pixel Format	5120 horiz. By 2880 vert. Pixels RGB stripes arrangement
Color Depth	1.07 Billion colors, 10Bit (8Bit + A-FRC)
Luminance, White	540 cd/m² (Center 1 Point, Typ.)
Viewing Angle(CR>10)	View Angle Free (R/L 178(Typ.), U/D 178(Typ.))
Power Consumption	Total (37.65 Watt (Typ.) (3.85 Watt @VLCD, 33.8 Watt @Is=145 mA)
Weight	2,630 g (Typ.)
Display Operating Mode	Transmissive mode, normally black
Surface Treatment	Anti-Reflective treatment of the front polarizer (2H)

Ver. 1.3 Feb., 14, 2020 4 / 35

Product Specification

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.


Table 1. ABSOLUTE MAXIMUM RATINGS

Dawanahar	Complete	Valu	ies	Huita	Notes
Parameter	Symbol	Min	Max	Units	Notes
Power Input Voltage	VLCD	-0.3	12	Vdc	at 25 ± 2°C
Operating Temperature	Тор	0	50	°C	
Storage Temperature	Tst	-20	60	°C	1 2 2
Operating Ambient Humidity	Нор	10	90	%RH	1, 2, 3
Storage Humidity	Нѕт	10	90	%RH	
LCM Surface Temperature (Operation)	T _{Surface}	0	65	°C	1,4

Note: 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max, and no condensation of water.

- 2. Maximum Storage Humidity is up to 40 $^{\circ}\text{C}$, 70% RH only for 4 corner light leakage Mura.
- 3. Storage condition is guaranteed under packing condition
- 4. LCM Surface Temperature should be Min. 0°C and Max. 65°C under the VLCD=10.0V, fV=60Hz, 25°C ambient Temp. no humidity control and LED string current is typical value.

FIG.2 Temperature and relative humidity

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

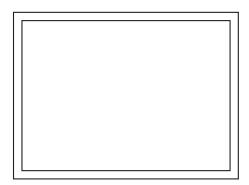
It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs.

Table 2-1. ELECTRICAL CHARACTERISTICS

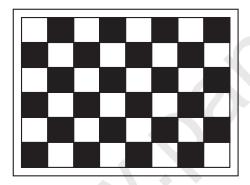
Davamakav	Cumhal		Values	Heit	Natas	
Parameter	Symbol	Min	Тур	Max	Unit	Notes
MODULE:						
Power Supply Input Voltage	VLCD	9.5	10.0	10.5	Vdc	5
Permissive Power Input Ripple	VdRF			400	mV _{p-p}	1
Douge Cumply Input Cumpent	Ti on	-	385	480	mA	2
Power Supply Input Current	ILCD	-	900	1120	mA	3
Dower Concumption	Рс ТҮР	-	3.85	4.80	Watt	2
Power Consumption	Рс мах	-	9.00	11.20	Watt	3
Rush current	Irush	-		3	А	4

Note

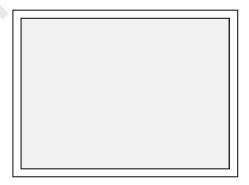
- 1. Permissive power ripple should be measured under V_{LCD} =10.0V, 25 \pm 2°C, f_V =60Hz condition and at that time, we recommend the bandwidth configuration of oscilloscope is to be under 20Mhz.
- 2. The specified current and power consumption are under the V_{LCD} =10.0V, 25 ± 2°C, f_V =60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.
- 3. The current is specified at the maximum current pattern.
- 4. The duration of rush current is about 2ms and rising time of power Input is 1ms(min.).
- 5. VLCD level must be measured at two points on LCM PCB between VLCD(test point) and LCM Ground. The measured results need to meet the Power supply input voltage spec. (Test condition: maximum power pattern, $25\pm2^{\circ}$ C, fV=60Hz)



Product Specification



White pattern



Black pattern

 \bullet **Power consumption (**V_{LCD} =10V, 25°C, fV (frame frequency=60Hz condition)

Typical power Pattern

Maximum power Pattern

FIG.3 Mosaic pattern & 1dot Pattern for power consumption measurement

Product Specification

Table 2-2. LED Bar ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Symbol			Unit	Notes
Parameter	Syllibol	Min.	Тур.	Max.	Oilit	Notes
LED String Current	Is	-	145	150	mA	1, 2, 5
LED String Voltage	Vs	54.5	58.3	62.1	V	1, 5
Power Consumption	PBar	-	33.8	36.1	Watt	2, 4
LED Life Time	LED_LT	30,000	-	- (Hrs	3

Notes) The LED Bar consists of 76ea LED packages, 4 strings (parallel) x 19 packages (serial)

LED driver design guide

- The design of the LED driver must have specifications for the LED in LCD Assembly.
 The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the LED driver.
 - So all the parameters of an LED driver should be carefully designed and output current should be Constant current control.
 - Please control feedback current of each string individually to compensate the current variation among the strings of LEDs.
 - When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the LED driver (no lighting, flicker, etc) never occurs.
 - When you confirm it, the LCD module should be operated in the same condition as installed in your instrument.
- LGD strongly recommend Analog Dimming method for Backlight Brightness control for Wavy Noise Free.
 Otherwise, recommend that Dimming Control Signal (PWM Signal) should be synchronized with Frame Frequency.
- 1. The specified values are for a single LED bar .
- 2. The specified current is defined as the input current for a single LED string with 100% duty cycle.
- 3. The LED life time is defined as the time when brightness of LED packages become 50% or less than the initial value under the conditions at $Ta = 25 \pm 2^{\circ}C$ and LED string current is typical value.
- 4. The power consumption shown above does not include loss of external driver. The typical power consumption is calculated as $P_{Bar} = Vs(Typ.) \times Is(Typ.) \times No.$ of strings. The maximum power consumption is calculated as $P_{Bar} = Vs(Max.) \times Is(Typ.) \times No.$ of strings.
- 5. LED operating conditions are must not exceed Max. ratings.

Product Specification

3-2. Interface Connections 3-2-1. LCD Module

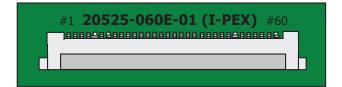
-. LCD Connector(CN1): 20525-060E-01 (manufactured by I-PEX)
The pin configuration for the 60 pin connector is shown in the table below.

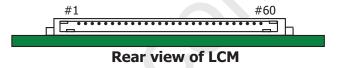
Ta	ble 3. MOI	DULE CONNECTOR(CN1) PIN CONFI	GURA	TION	
No	Symbol	Description	No	Symbol	Description
1	GND	Ground	31	DP0_L1_N	Master Component Signal for Main Link 1
2	VIN	Power Supply +10.0V	32	GND	Ground
3	VIN	Power Supply +10.0V	33	DP0_L2_P	Master True Signal for Main Link 2
4	VIN	Power Supply +10.0V	34	DP0_L2_N	Master Component Signal for Main Link 2
5	VIN	Power Supply +10.0V	35	GND	Ground
6	VIN	Power Supply +10.0V	36	DP0_L3_P	Master True Signal for Main Link 3
7	VIN	Power Supply +10.0V	37	DP0_L3_N	Master Component Signal for Main Link 3
8	VIN	Power Supply +10.0V	38	GND	Ground
9	VIN	Power Supply +10.0V	39	DP1_L0_P	Slave True Signal for Main Link 0
10	GND	Ground	40	DP1_L0_N	Slave Component Signal for Main Link 0
11	GND	Ground	41	GND	Ground
12	GND	Ground		DP1_L1_P	Slave True Signal for Main Link 1
13	GND	Ground		DP1_L1_N	Slave Component Signal for Main Link 1
14	GND	Ground		GND	Ground
15	GND	Ground		DP1_L2_P	Slave True Signal for Main Link 2
16	GND	Ground	46	DP1_L2_N	Slave Component Signal for Main Link 2
17	GND	Ground		GND	Ground
18	GND	Ground		DP1_L3_P	Slave True Signal for Main Link 3
19	NC	No Connection(I2C serial interface for LCM)	49	DP1_L3_N	Slave Component Signal for Main Link 3
20	NC	No Connection(I2C serial interface for LCM)	50	GND	Ground
21	DP0_HPD	Master Hot Plug Detect Signal	51	DP1_AUX_P	Slave True Signal for Auxiliary Channel
22	DP1_HPD	Slave Hot Plug Detect Signal	52	DP1_AUX_N	Slave Component Signal for Auxiliary Channel
23	GND	Ground	53	GND	Ground
24	DP0_AUX_P	Master True Signal for Auxiliary Channel	54	NC	No Connection(I2C serial interface for LCM)
25	DP0_AUX_N	Master Component Signal for Auxiliary Channel	55	NC	No Connection(I2C serial interface for LCM)
26	GND	Ground	56	BL_EN	Enable signal for backlight (when high)
27	DP0_L0_P	Master True Signal for Main Link 0	57	GND	Ground
28	DP0_L0_N	Master Component Signal for Main Link 0	58	NC	No Connection
29	GND	Ground	59	GND	Ground
30	DP0_L1_P	Master True Signal for Main Link 1	60	NC	No Connection

Note: 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame.

- 2. All VLCD (power input) pins should be connected together.
- 3. BL_EN (Enable signal for backlight): If you don't use this pin, it should be NC (No connection).

Ver. 1.3 Feb., 14, 2020 9 / 35



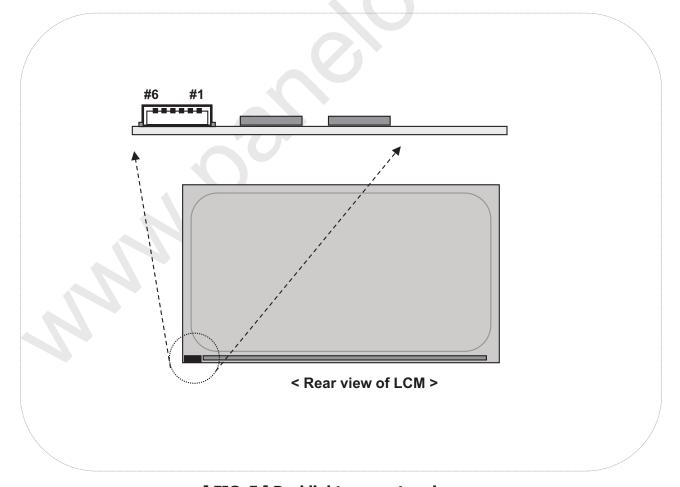

Product Specification

3-2-1. LCD Module

Notes: 1. Connector

2.1 Connector (Receptacle): 20525-060E-01(I-PEX) 2.2 Mating Connector (Plug): 20523-060T (I-PEX)

Product Specification


3-2-2. BACKLIGHT CONNECTOR PIN CONFIGURATION(CN2)

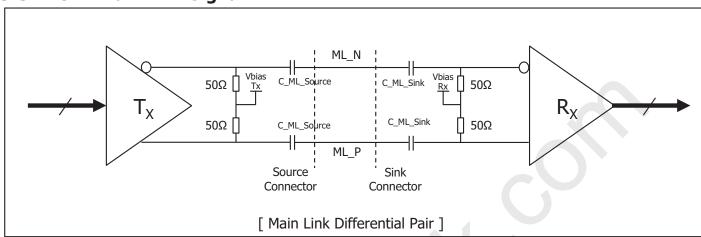
The LED interface connector is a model 10035WR-H06D(HF) (Manufactured by Yeonho) or equivalent. The mating connector is a SHJP-06V-S(HF) or equivalent.

The pin configuration for the connector is shown in the table below.

Table 3-1. LED CONNECTOR PIN CONFIGURATION

Pin	Symbol	Description
1	FB1	Channel1 Current Feedback
2	FB2	Channel2 Current Feedback
3	VLED	LED Power Supply
4	VLED	LED Power Supply
5	FB3	Channel3 Current Feedback
6	FB4	Channel4 Current Feedback

[FIG. 5] Backlight connector view



Product Specification

3-3. eDP Signal Specifications

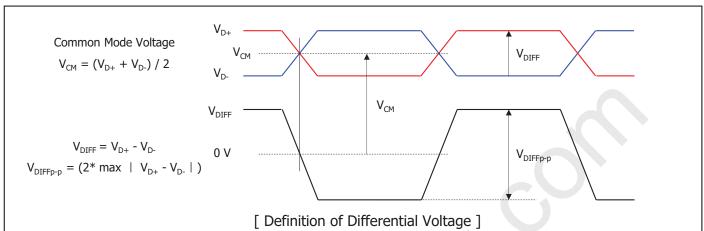
3-3-1. eDP Main Link Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval for high bit rate (5.4Gbps / lane)	UI_HBR2	-	185		ps	
Link Clock Down Sproading	Amplitude	0	-	0.5	%	
Link Clock Down Spreading	Frequency	30		33	kHz	
Differential peak-to-peak voltage at Sink side connector	V _{RX-DIFFp-p}	_	-	1.38	V	Note 6,7)
EYE width at Sink side connector	T _{RX-EYE-CONN}	0.38	-	-	UI	Note 6,7)
Lane-to-Lane skew	L _{Rx-SKEW-} INTER_PAIR	-	-	4UI+ 500ps		
Lane intra-pair skew	L _{Rx-SKEW-} INTRA_PAIR	-	-	50	ps	
Master Tx -to-Slave Tx skew	Tx-to- Tx_skew	-	-	±640	clk	
AC Coupling Capacitor	C _{SOURCE} ML	75		200	nF	Source side

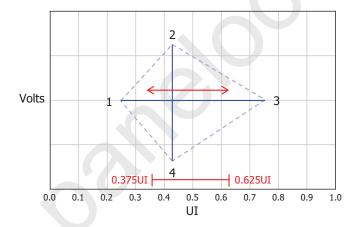
Note)

- 1. Termination resistor is typically integrated into the transmitter and receiver implementations.
- 2. In cabled embedded system, it is recommended the system designer ensure that EYE width and voltage are met at the sink side connector pins.
- 3. Mismatched common mode voltage will occur abnormal display.
- 4. All eDP electrical spec is measured at sink connector side.
- 5. eDP cable Impedance should be 100ohm \pm 5%.

Ver. 1.3 Feb., 14, 2020 12 / 35



Global LCD Panel Exchange Center


LM270QQ2 Liquid Crystal Display

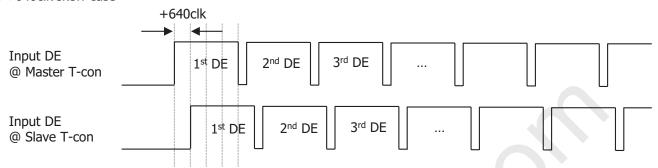
Product Specification

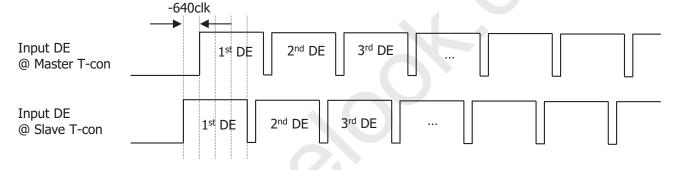
Note6) Definition of Differential Voltage

Note7) Main Link EYE Diagram

Doint	High Bit Rate 2 @ TP3 EQ	
Point	Time(UI)	Voltage(V)
i	Any UI location (x) where the eye width is open from x to $x+0.38UI$	0.000
2	Any passing UI location between 0.375UI-0.625UI	0.045
3	Point 1 + 0.38UI	0.000
4	Same as Point 2	-0.045

[EYE Mask Vertices at embedded DP Sink Connector Pins]

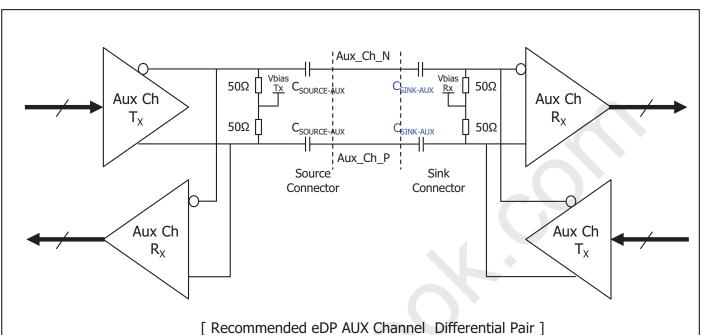



Product Specification

Note8) Master Tx to Slave Tx skew margin case

(1) +640clk skew case

(2) -640clk skew case



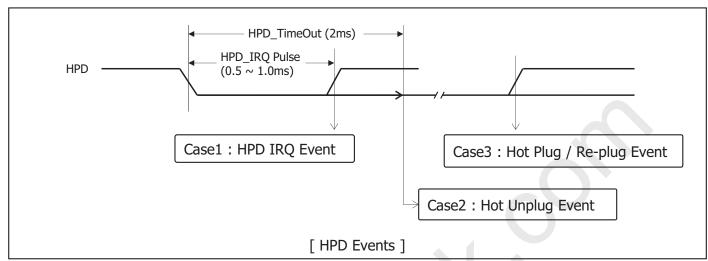
Product Specification

3-3-2. eDP AUX Channel Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
AUX Unit Interval	UI	0.4	-	0.6	us	
AUX Jitter at Tx IC Package Pins	T	-	-	0.04	UI	Equal to 24ns
AUX Jitter at Rx IC Package Pins	T _{jitter}	-	-	0.05	UI	Equal to 30ns
AUX Peak-to-peak voltage at Connector Pins of Receiving		0.32	-	1.36	V	
AUX Peak-to-peak voltage at Connector Pins of Transmitting	V _{AUX-DIFFp-p}	0.39	-	1.38	V	
AUX EYE width at Connector Pins of Tx and Rx		0.98	-	-	UI	
ALIV DC common mode voltage	V _{AUX-CM _Rx}	-	0	2.0	V	
AUX DC common mode voltage	V _{AUX-CM _Tx}	-	0.15	2.0	V	
AUX AC Coupling Capacitor	C _{SOURCE-AUX}	75		200	nF	Source side

Note)

- 1. Termination resistor is typically integrated into the transmitter and receiver implementations.
- 2. $V_{AUX-DIFFp-p}=2*\mid V_{AUXP}-V_{AUXN}\mid$ 3. Termination resistor should be ± 50 ohm at source side to AUX level.
- 4. At sink side AUX cap. are for protection ESD/EOS damage.
- 5. Mismatched common mode voltage will occur abnormal display.


Ver. 1.3 Feb., 14, 2020 **15 / 35**

Product Specification

3-3-5. eDP HPD Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
HPD Voltage		2.25	-	3.6	V	Sink side Driving
Hot Plug Detection Threshold	HPD	2.0	(-)	-	V	Course side Detecting
Hot Unplug Detection Threshold		-	-	0.8	V	Source side Detecting
HPD_IRQ Pulse Width	HPD_IRQ	0.5	-	1.0	ms	
HPD_TimeOut		2.0	-	-	ms	HPD Unplug Event

Note)

- 1. HPD IRQ: Sink device wants to notify the Source device that Sink's status has changed so it toggles HPD line, forcing the Source device to read its Link / Sink Receiver DPCD field via the AUX-CH
- 2. HPD Unplug: The Sink device is no longer attached to the Source device and the Source device may then disable its Main Link as a power saving mode
- 3. Plug / Re-plug : The Sink device is now attached to the Source device, forcing the Source device to read its Receiver capabilities and Link / Sink status Receiver DPCD fields via the AUX-CH

Product Specification

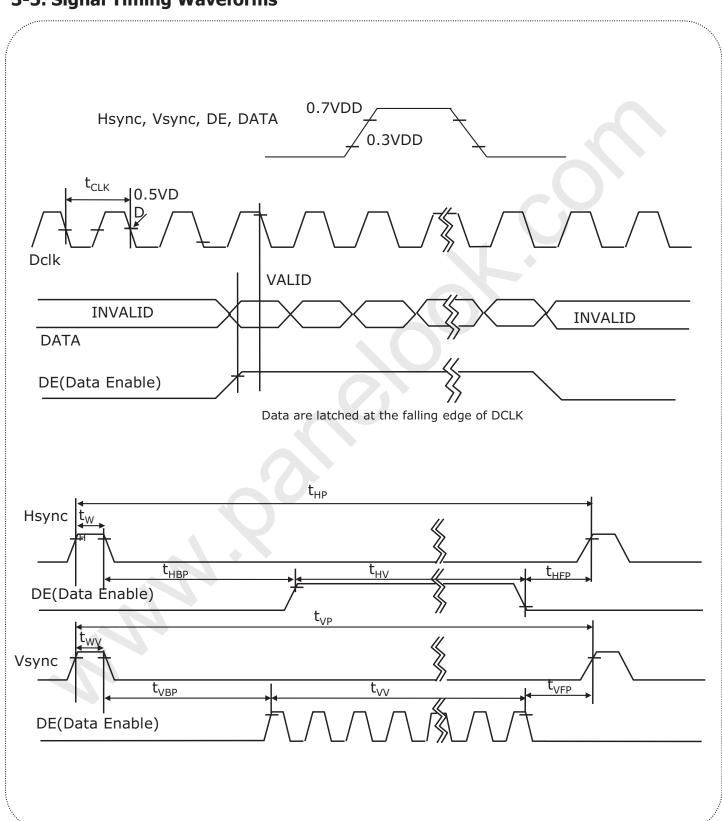
3-4. Signal Timing Specifications

This is signal timing required at the input of the TMDS transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

Table 4. TIMING TABLE

	ITEM	SYMBOL	Min	Тур	Max	Unit	Note
	Period	tCLK	2.07	2.07	2.07	ns	
DCLK	Frequency	fCLK	483.4	483.4	483.4	MHz	-
	Period	tHP	2720	2720	2720		
Hsync	Width-Active	twH	32	32	32	tCLK	
	Period	tVP	2962	2962	2962	tHP	
Vsync	Frequency	fV	60	60	60	Hz	*Adaptive sync:
	Width-Active	twv	5	5	5	tHP	
	Horizontal Valid	tHV	2560	2560	2560		
	Horizontal Back Porch	tHBP	80	80	80	tCLK	
	Horizontal Front Porch	tHFP	48	48	48		
Data	Horizontal Blank	-	160	160	160		twn+ thbp+ thfp
Enable	Vertical Valid	tvv	2880	2880	2880		
	Vertical Back Porch	tVBP	74	74	74	hup.	
	Vertical Front Porch	tVFP	3	3	3	tHP	
	Vertical Blank	-	82	82	82		twv+ tvbp+ tvfp

Note:


- 1. DE Only mode operation. The input of Hsync & Vsync signal does not have an effect on LCD normal operation.
- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 3. Horizontal period & width-active should be any times of character number(4).
- * This panel supports adaptive sync timing $40\sim60$ Hz only under moving picture in room temperature($25\pm5^{\circ}$ C).
 - It would not work usually under still image & reliability test.
 - Under those condition, the phenomenon such as image sticking and flickering could be found on the screen.

Product Specification

3-5. Signal Timing Waveforms

Ver. 1.3 Feb., 14, 2020 18 / 35

Product Specification

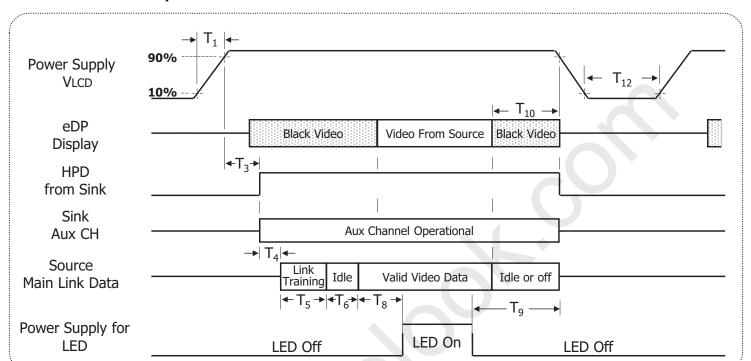
3-6. Color Input Data Reference

The Brightness of each primary color(red,green,blue) is based on the 10-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 5. COLOR DATA REFERENCE

	COLOR DATA	KEFEKEN	CE					
				Inp	ut Color Data			
	Color	MSB	RED LSB	MSB	GREEN	LSB	BLUE SB MSB LSB	
		R9 R8 R7	R6 R5 R4 R3 R2 R1 R0	G9 G8 (67 G6 G5 G4 G3 G2 G1	G0	B9 B8 B7	B6 B5 B4 B3 B2 B1 B0
	Black	000	0 0 0 0 0 0 0	0 0 0	000000	0	000	0 0 0 0 0 0 0
	Red (1023)	111	1 1 1 1 1 1 1	000	000000	0	000	0 0 0 0 0 0
	Green (1023)	0 0 0	0 0 0 0 0 0 0	1 1 :	111111	1	000	0 0 0 0 0 0 0
Basic	Blue (1023)	0 0 0	0 0 0 0 0 0 0	0 0 (0 0 0 0 0 0	0	1 1 1	1 1 1 1 1 1 1
Color	Cyan	0 0 0	0 0 0 0 0 0 0	1 1	111111	1	1 1 1	1 1 1 1 1 1 1
	Magenta	1 1 1	1 1 1 1 1 1 1	000	0 0 0 0 0 0	0	1 1 1	1 1 1 1 1 1 1
	Yellow	1 1 1	1 1 1 1 1 1 1	1 1 :	1 1 1 1 1 1 1	1	0 0 0	0 0 0 0 0 0 0
	White	1 1 1	1 1 1 1 1 1	1 1	111111	1	111	1 1 1 1 1 1 1
	RED (000)	0 0 0	0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0	0 0 0	0 0 0 0 0 0
	RED (001)	0 0 0	0 0 0 0 0 0 1	0 0 (0 0 0 0 0 0	0	0 0 0	0 0 0 0 0 0
RED								
	RED (1022)	111	1 1 1 1 1 0	0 0 (0 0 0 0 0 0	0	0 0 0	0 0 0 0 0 0 0
	RED (1023)	111	111111	0 0 (0 0 0 0 0 0	0	0 0 0	0 0 0 0 0 0
	GREEN (000)	0 0 0	0 0 0 0 0 0 0	0 0 0	000000	0	0 0 0	0 0 0 0 0 0
	GREEN (001)	0 0 0	0 0 0 0 0 0 0	0 0 0	000000	1	0 0 0	0 0 0 0 0 0
GREEN								
	GREEN (1022)	0 0 0	0 0 0 0 0 0 0	111	111111	0	0 0 0	0 0 0 0 0 0 0
	GREEN (1023)	0 0 0	0 0 0 0 0 0 0	111	111111	1	0 0 0	0 0 0 0 0 0 0
	BLUE (000)	0 0 0	0 0 0 0 0 0 0	0 0 (0 0 0 0 0 0	0	0 0 0	0 0 0 0 0 0
	BLUE (001)	0 0 0	0 0 0 0 0 0 0	0 0 (0 0 0 0 0 0	0	0 0 0	0000001
BLUE								•••
	BLUE (1022)	0 0 0	0 0 0 0 0 0 0	0 0 (0 0 0 0 0 0	0	111	1 1 1 1 1 1 0
	BLUE (1023)	0 0 0	0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0	111	 1 1 1 1 1 1 1

Ver. 1.3 Feb., 14, 2020 19 / 35



Product Specification

3-7. Power Sequence

3-7-1. Power Sequence

Table 6. POWER SEQUENCE TABLE

Timing	Required	Lin	nits	Linita	Notes
Timing	Ву	Min	Max	Units	Notes
T_1	Source	0.5	10	ms	-
T ₃	Sink	15	200	ms	-
T ₄	Source	1	-	ms	6
T ₅	Source	1	+	ms	6
T ₆	Source	1	100	ms	-
T ₈	Source	200	-	ms	
T ₉	Source	200	-	ms	7

Timina	Required	Lim	its	Uni	Notes	
riiiiig	Ву	Min	Max	ts	Notes	
T ₁₀	Source	0	500	ms	-	
T ₁₂	Source	1000	1	ms		
		T ₁₀ Source	By Min T ₁₀ Source 0	By Min Max T ₁₀ Source 0 500	By Min Max ts T ₁₀ Source 0 500 ms	

Note:

- 1. Power sequence should be kept all the time including below cases for normal operation.
 - -.AC/DC Power On/Off
 - -. Mode change (resolution, frequency, timing, sleep mode, color depth change, etc.) The violation of power sequence can cause a significant trouble in display and reliability.
- 2. Please avoid floating state of interface signal during signal invalid period.
- 3. When the interface signal is invalid, be sure to pull down the VLCD.(0V)
- 4. Please turn off the power supply for LED when the level of VLCD changes to prevent noise issue.
- 5. Link training duration is dependent on the customer's system.
- 6. It includes Source Frame Synchronization time.

Source Frame Synchronization: Time to prepare before Tx(Source) sends valid data(Invalid period)

Product Specification

3-7-2. VLCD Power Dip Condition

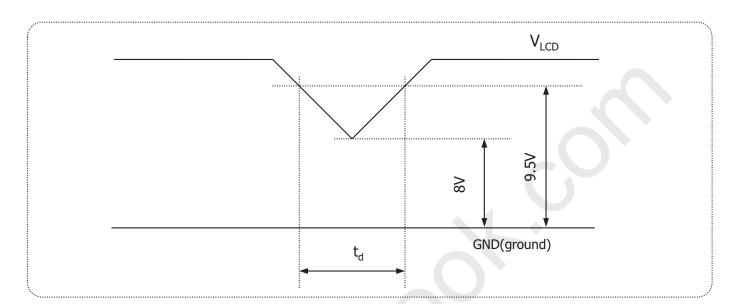


FIG.6 Power dip condition

1) Dip condition

$$8V \le V_{LCD} < 9.5V$$
 , $t_d \le 20ms$

2) V_{LCD} < 8V

 V_{LCD} -dip conditions should also follow the Power On/Off conditions for supply voltage.

Product Specification

4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at 25 \pm 2°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 ° and aperture 1 degree.

FIG. 6 presents additional information concerning the measurement equipment and method.

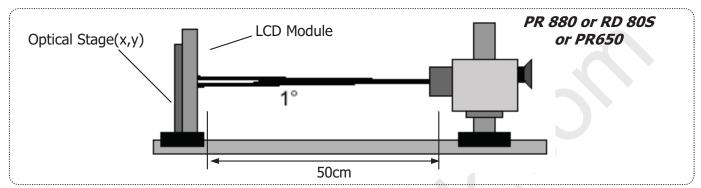


FIG.7 Optical Characteristic Measurement Equipment and Method

 Table 7. OPTICAL CHARACTERISTICS

(Ta=25 °C, V_{LCD} =10V, f_{V} =60Hz, Dclk= 590MHz, Is=145mA)

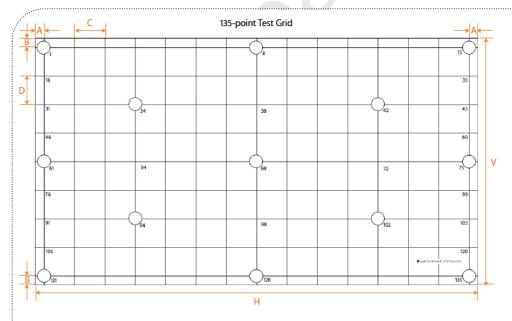
able 7: Of FICAL CHARACTERISTICS		(1a-23	s=145MA)				
Parameter		Symbol		Values		Units	Notes
raiaiiie		Syllibol	Min	Тур	Max	Offics	Notes
Contrast	Ratio	CR	770	1100	-		1
Surface Lumina	ince, white	L _{WH}	440	540	-	cd/m ²	2
Luminance V	ariation/	δ white	-	-	37	%	3
Response Time	Gray To Gray	T _{GTG_AVR}	-	14	25	ms	4
	RED	Rx		0.680			
		Ry		0.316			
	GREEN	Gx		0.256			
Color Coordinates [CIE1931]		Gy	Typ -0.03	0.697	Typ +0.03		
(By PR650)	BLUE	Bx		0.153			
(D) Those)		Ву		0.054			
	WHITE	Wx		0.313			
		Wy		0.329			
	Total Δu'v'	Δu′v′ _T			0.012		
	u' range	Δu′ _T			0.009		
Color Uniformity	v' range	Δv′ _T			0.009		5
,	Nearest- neighbor uniformity	Δu′v′ _N			0.0050		
Color Shift	Horizontal	$\theta_{\text{CST_H}}$	-	178	-	Dograd	6
COIOI SIIII	Vertical	$\theta_{\text{CST}_{V}}$	-	178	-	Degree	0
Viewing Angle (CR>10)							
General	Horizontal	θ_{H}	-	178	-	Dograd	7
Gerierai	Vertical	θ_{V}	-	178	-	Degree	7
Gray Sc	ale	-	-	2.2	-		8

Ver. 1.3 Feb., 14, 2020 22 / 35

Product Specification

Notes 1. Contrast Ratio(CR) is defined mathematically as: (By PR880)

 $Contrast Ratio = \frac{Surface Luminance with all white pixels}{Surface Luminance with all black pixels}$


It is measured at center point(Location P68)

- 2. Surface luminance(LwH)is luminance value at Center 1 point(P68) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG.8 (By PR880)
- 3. The variation in surface luminance , δ WHITE is defined as : (By PR880)

$$\delta_{WHITE} = \frac{\text{Maximum}(P_1, P_8,, P_{128}, P_{135}) - \text{Minimum}(P_1, P_8,, P_{128}, P_{135})}{\text{Average } (P_{34}, P_{42}, P_{68}, P_{9}4, P_{102})} \times 100(\%)$$

Measurement points are P1,P8,P15,P34,P42,P61,P68,P75,P94,P102,P121,P128,P135 For more information see FIG 8.

- 4. Gray to gray response time is the time required for the display to transition from gray to gray. For additional information see Table 8. (By PR880)
- 5. Color uniformity is calculated with CIE1976 color and its formula is as follows.
 - -. Total $\Delta u'v'(\Delta u'v'_T) = Maximum$
 - A: measurement point (P1,P8,P15,P34,P42,P61,P68,P75,P94,P102,P121,P128,P135)
 - B: 5 points Avg. (P34, P42, P68, P94, P102)
 - -. $u' \text{ range}(\Delta u'_T) = \text{Maximum } u' \text{Minimum } u'$ measurement point (P1,P8,P15,P34,P42,P61,P68,P75,P94,P102,P121,P128,P135)
 - -. $v' \text{ range}(\Delta v'_{\mathsf{T}}) = \text{Maximum } v' \text{Minimum } v'$ measurement point (P1,P8,P15,P34,P42,P61,P68,P75,P94,P102,P121,P128,P135)
 - -. Nearest-neighbor uniformity($\Delta u'v'_N$) = Maximum
 - A: neighboring points(up, down, right and left of measurement point)
 - B: measurement point (P1,P2,P3...P134,P135)

A: 10.0 mm (Distance from active area edge)

B: 10.0 mm (Distance from active area edge)

C: 41.31 mm

(Measurement interval in the horizontal direction)

D: 39.56 mm

(Measurement interval in the vertical direction)

H: 598.272 mm V: 336.528mm @ H,V: Active Area

FIG. 8 Measurement Point for Luminance, Luminance Variation, Color Coordinates, Color Uniformity, Contrast Ratio

Product Specification

- 6. Color shift is the angle at which the average color difference for all Macbeth is lower than 0.02. For more information see FIG.10 (By EZ Contrast)
 - Color difference (Δu'v')

$$u' = \frac{4x}{-2x + 12y + 3} \qquad v' = \frac{9y}{-2x + 12y + 3}$$

$$\Delta u'v' = \sqrt{(u'_1 - u'_2)^2 + (v'_1 - v'_2)^2}$$

$$\Delta u'v' = \sqrt{(u'_1 - u'_2)^2 + (v'_1 - v'_2)^2}$$

$$u'1, v'1 : u'v' \text{ value at viewing angle } u'2, v'2 : u'v' \text{ value at front } (\theta = 0)$$

$$i : \text{Macbeth chart number (Define 23)}$$

$$\Delta u'v' = \sqrt{(u'_1 - u'_2)^2 + (v'_1 - v'_2)^2}$$

u'1, v'1 : u'v' value at viewing angle direction

i : Macbeth chart number (Define 23 page)

- Pattern size: 25% Box size
- Viewing angle direction of color shift: Horizontal, Vertical
- 7. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.11 (By PR880)
- 8. Gamma Value is approximately 2.2. For more information see Table 9.

Product Specification

G to G(BW) Response time is defined as the following figure and shall be measured by switching the input signal for "G(BW)" and "G(BW)" and "Black or White".

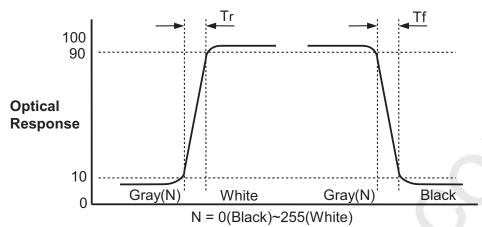


FIG.9 Response time

Color shift is defined as the following test pattern and color.

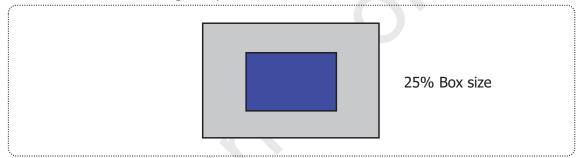


FIG.10 Color Shift Test Pattern

Average RGB values in Bruce RGB for Macbeth Chart

	Dark skin	Light skin	Blue sky	Foliage	Blue flower	Bluish green
R	98	206	85	77	129	114
G	56	142	112	102	118	199
В	45	123	161	46	185	178
	Orange	Purplish blue	Moderate red	Purple	Yellow green	Orange yellow
R	219	56	211	76	160	230
G	104	69	67	39	193	162
В	24	174	87	86	58	29
	Blue	Green	Red	Yellow	Magenta	cyan
R	26	72	197	241	207	35
G	32	148	27	212	62	126
В	145	65	37	36	151	172
	White	Neutral 8	Neutral 6.5	Neutral 5	Neutral 3.5	black
R	240	206	155	110	63	22
G	240	206	155	110	63	22
В	240	206	155	110	63	22

Ver. 1.3 Feb., 14, 2020 25 / 35

Product Specification

Dimension of viewing angle range.

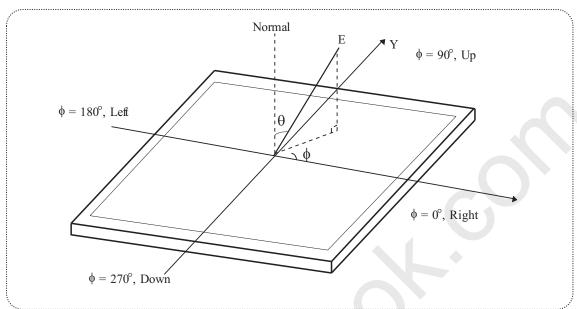


FIG.11 Viewing angle

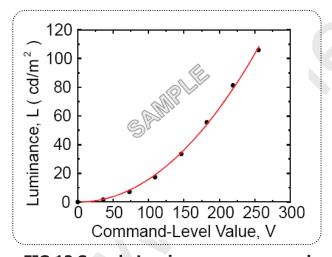


FIG.12 Sample Luminance vs. gray scale (using a 256 bit gray scale)

$$L = aV^r + L_b$$

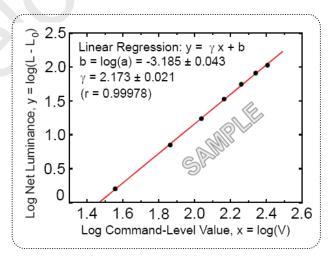


FIG.13 Sample Log-log plot of luminance vs. gray scale

$$\log(L - L_b) = r \log(V) + \log(a)$$

Here the Parameter α and γ relate the signal level V to the luminance L. The GAMMA we calculate from the log-log representation (FIG.12)

Product Specification

The Gray to Gray response time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray ".

- Gray step: 5 Step
- TGTG_AVR is the total average time at rising time and falling time for "Gray To Gray ".

Table 8. Gray to gray response time table

Crov to Cr	Gray to Gray		Rising Time						
Gray to Gi	ау	G1023	G767	G511	G255	G0			
	G1023								
	G767								
Falling Time	G511								
	G255								
	G0								

Table 9. Gray Scale Specification

Gray Level	Relative Luminance [%] (Typ.)
0	0.10
63	0.30
127	1.08
191	2.50
255	4.71
319	7.70
383	11.52
447	16.18
511	21.72
575	28.15
639	35.51
703	43.81
767	53.07
831	63.30
895	74.52
959	86.75
1023	100

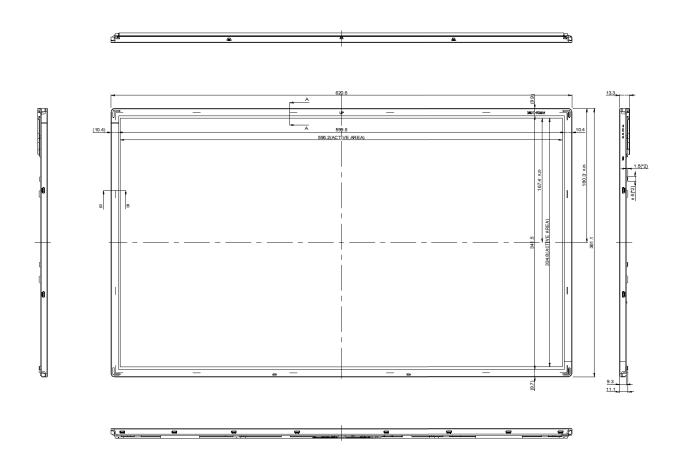
Product Specification

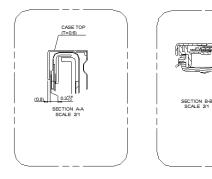
5. Mechanical Characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	620.6mm			
Outline Dimension	Vertical	361.1mm			
	Depth	13.3mm			
Bezel Area	Horizontal	599.8mm			
Бегеі Агеа	Vertical	341.5mm			
Active Display Area	Horizontal	598.272mm			
Active Display Area	Vertical	336.528mm			
Weight	2630g(Typ.) / 2760g (Max.)				
Surface Treatment	Advanced Anti-Reflective treatment	of the front polarizer (2H)			

Notes: Please refer to a mechanic drawing in terms of tolerance at the next page.





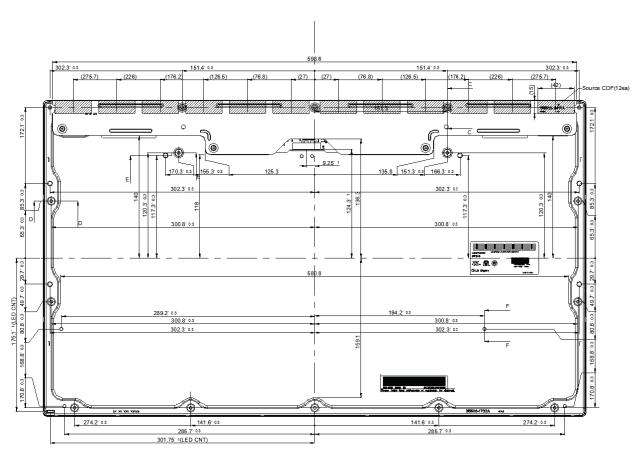
Product Specification

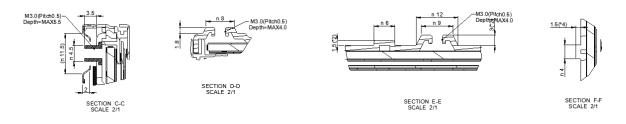
<FRONT VIEW>

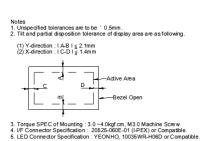
<u>Update: 16/11/21</u>

LGD Highly recommendation:

System chassis or frame should be designed to keep the IPS Panel flat as it is vulnerable to panel light-leakage caused by deformation.






Product Specification

<REAR VIEW>

<u>Update: 16/11/21</u>

Ver. 1.3 Feb., 14, 2020 30 / 35

Product Specification

6. Reliability

Environment test condition

No	Test Item	Condition	Notes
1	High temperature storage test	Ta= 60°C 240h	1
2	Low temperature storage test	Ta= -20°C 240h	1
3	High temperature operation test	Ta= 50°C 50%RH 240h	1
4	Low temperature operation test	Ta= 0°C 240h	1
5	Humidity condition Operation	Ta= 40 °C ,90%RH	
6	Altitude operating storage / shipment	0 - 16,400 feet(5,000m) 0 - 40,000 feet(12,192m)	
7	Maximum Storage Humidity for 4 corner light leakage Mura.	Max 70%RH , Ta=40℃	

Note 1. Result Evaluation Criteria:

TFT-LCD panels test should take place after cooling enough at room temperature. In the standard condition, there should be no particular problems that may affect the display function.

%. T_a = Ambient Temperature

Product Specification

7. International Standards

7-1. Safety

- a) UL 60950-1, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1 : General Requirements.
- b) CAN/CSA-C22.2 No. 60950-1-07, Canadian Standards Association. Information Technology Equipment - Safety - Part 1 : General Requirements.
- c) EN 60950-1, European Committee for Electrotechnical Standardization (CENELEC). Information Technology Equipment Safety Part 1 : General Requirements.
- d) IEC 60950-1, The International Electrotechnical Commission (IEC). Information Technology Equipment - Safety - Part 1 : General Requirements

7-2. Environment

a) RoHS, Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011

Product Specification

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

Α	В	С	D	Е	F	G	Н	I	J	K	L	М	1
---	---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C: SIZE(INCH)

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	Α	В	С	D	Е	F	G	Н	J	K

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

D: YEAR

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

1) Package quantity in one box: 10 ea

b) Box Size: 710mm X 365mm X 448mm

Product Specification

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.
- (10) As The IPS panel is sensitive & slim, please recommend the metal frame of the system supports the panel by the double side-mount.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm200mV(Over\ and\ under\ shoot\ voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In Higher temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw. (if not, it causes metallic foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.
- (10) When LCMs are used for public display defects such as Yogore, image sticking can not be guarantee.
- (11) LCMs cannot support "Interlaced Scan Method"
- (12) Please conduct image sticking test after 2-hour aging with Rolling PTN and normal temperature(25~40°C)
- (13) When this reverse model is used as a forward-type model (PCB on top side), LGD can not guarantee any defects of LCM.

Product Specification

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.